User Tools

Site Tools


This is an old revision of the document!

Shapeoko 2

The Shapeoko 2 is a light-duty desktop CNC router from Inventables (not to be confused with the Shapeoko 3 from Carbide 3D) with an approximate cut area of 11“x11”. The controller is an Arduino Uno running GRBL v1.1 with a GShield driver.


You must be signed off to use the Shapeoko 2. There are 2 ways to get signed off:

  1. Class option: Take a Shapeoko 2 introductory class (occasionally offered through Eventbrite).
  2. Self-guided option: Read this wiki page. Email [email protected] for permission to operate the Shapeoko for the purpose of learning. Then you will be permitted to setup, home, jog, and zero the machine. You may create your CAD/CAM design, but don't run your GCode yet. Just practice setting up. Once you are ready to rout your first design, schedule a time with the CNC manager or other qualified person for demonstrating competency. You should be able to
  • Turn on and off the machine
  • Home the machine
  • Jog the machine
  • Use a workholding method of your choice
  • Change router bits
  • Set the zero position

You will finally run your CAM program (it must be your own design)


Ensuring safe use of the machine is the responsibility of the user. In general, you should always:

  • Wear eye protection,
  • Wear hearing protection,
  • Use a respirator when cutting wood for long periods of time,
  • Avoid putting your hand or fingers near the bit while it is spinning.


The following instructions assume you are using Easel for CAD and CAM, and for sending GCode to the controller. You can use other CAM programs, but Easel is the easiest for getting started because it walks you step-by-step through the sequence of operations for setting up and executing a cut.

Creating an Inventables account

Go to and follow the instructions to setup an account.

Operating the Shapeoko

Machine settings

When you startup Easel, setup the machine with the following settings.

Setting Value
Machine Shapeoko (1 or 2)
Work Area 11.2 x 11.2
Spindle Control Manual
Machine Type Shapeoko (1 or 2)
Motion Controller Arduino & gShield
Rail Size 500mm x 500mm
Lead screw M8 threaded rod
Spindle Dewalt 611
Limit switch setup Yes, enable homing

Powering the machine

The Arduino controller is powered by the computer via USB. The computer, monitor, and motor drives are powered by the distribution board as shown. The master, computer, and monitor switches may be left on all the time. The drives switch should be turned on when you want to start the drives and turned off when you are finished.


Workholding is the means of holding your workpiece while it is being cut. There are many tools you can use to hold a workpiece:

  • Vise
  • Clamps
  • Double-sided tape
  • Glue
  • Vacuum table
  • Screws/bolts
  • Brad nails

Illustrated here is a method of clamping your workpiece using setup clamps. Always ensure that your workholding tools are not in the way of the toolpath.

In photo: 1/4“ threaded rod, 1/4” flange nut, step block, and slotted bar

Setting Z-axis zero

The Z-axis work-zero position can be set using the included touch probe. Easel guides you through the process. The photo below shows the touch probe properly setup to begin the probing sequence.


  • You must be checked off to operate this machine.
  • Don't leave the machine running unattended.
  • If you break something (other than your bit), put an orange tag on the machine and email [email protected] so the machine can be repaired as quickly as possible.
  • Always clean up after use. Vacuum up dust. Wipe the MakerSlide rails.
  • TURN OFF the drives before you leave!

GRBL Settings

To view GRBL settings, enter $$ into the command line in Universal GCode Sender.

$0 = 10 (Step pulse time, microseconds)
$1 = 255 (Step idle delay, milliseconds)
$2 = 0 (Step pulse invert, mask)
$3 = 1 (Step direction invert, mask)
$4 = 0 (Invert step enable pin, boolean)
$5 = 0 (Invert limit pins, boolean)
$6 = 0 (Invert probe pin, boolean)
$10 = 115 (Status report options, mask)
$11 = 0.010 (Junction deviation, millimeters)
$12 = 0.002 (Arc tolerance, millimeters)
$13 = 0 (Report in inches, boolean)
$20 = 0 (Soft limits enable, boolean)
$21 = 0 (Hard limits enable, boolean)
$22 = 1 (Homing cycle enable, boolean)
$23 = 3 (Homing direction invert, mask)
$24 = 100.000 (Homing locate feed rate, mm/min)
$25 = 400.000 (Homing search seek rate, mm/min)
$26 = 250 (Homing switch debounce delay, milliseconds)
$27 = 5.000 (Homing switch pull-off distance, millimeters)
$30 = 1 (Maximum spindle speed, RPM)
$31 = 0 (Minimum spindle speed, RPM)
$32 = 0 (Laser-mode enable, boolean)
$100 = 40.000 (X-axis travel resolution, step/mm)
$101 = 40.000 (Y-axis travel resolution, step/mm)
$102 = 320.000 (Z-axis travel resolution, step/mm)
$110 = 9000.000 (X-axis maximum rate, mm/min)
$111 = 9000.000 (Y-axis maximum rate, mm/min)
$112 = 1000.000 (Z-axis maximum rate, mm/min)
$120 = 1000.000 (X-axis acceleration, mm/sec^2)
$121 = 400.000 (Y-axis acceleration, mm/sec^2)
$122 = 50.000 (Z-axis acceleration, mm/sec^2)
$130 = 250.000 (X-axis maximum travel, millimeters)
$131 = 250.000 (Y-axis maximum travel, millimeters)
$132 = 65.000 (Z-axis maximum travel, millimeters)

Dewalt DWP611 Speeds

Known Issues

  • The lead-screw bearing is not parallel to the Z axis. This can cause the Z axis to bind.

A temporary fix has been made in which the Z-axis bearing is allowed to wobble.

  • Static discharge causes a hard-limit switch to trigger.

The hard-limit switches have been disabled for this reason.

  • The slotted bar clamp is not sized for a 1/4“ threaded rod.

A temporary fix has been made with a flanged 1/4” nut.

  • The X- or Y- axes seize up from too much dust packed in the V wheels.

The Makerslide and V wheels should be kept clean. Always check the smoothness of the X, Y, and Z axes before your run.


May I change GRBL settings? Yes, but be sure to change them back when you are done. If you think the provided settings are suboptimal, email [email protected] Any help improving the performance and reliability of the Shapeoko is welcomed.

Can it cut metal? You may cut nonferrous metal. However, you may have difficulty, especially if you don't have the right feeds and speeds and an effective means of clearing chips. Do some research beforehand. Advanced toolpaths generated from Fusion 360 or Solidworks would improve your chances of success.

You can engrave ferrous metal, but you won't have much success making deep cuts.

May I use cutting fluid? Only if you find a way to contain the fluid without spilling it onto the MDF bed (you will have to make some sort of container mounted on the wasteboard). Otherwise, you can try using cutting wax instead. If you need to clear chips, use compressed air.

Can it cut plastic? Yes. Make sure to get your feeds and speeds right. If your plastic is melting, your feeds and speeds are wrong.

Do you provide end mills and router bits? There may be some free-to-use bits available that were donated by members. If an end mill doesn't have an owner tag on it, you may use it. There is a plan to keep a stock of frequently-used bits for sale in the CNC area.

May I use my own computer? Yes. Make sure to plug the USB cable back into the Shapeoko computer when you are finished. I would recommend plugging your laptop into an outlet to ensure it is grounded.

May I resurface the wasteboard? Yes. Try not to resurface the wasteboard too often, because it takes time to replace the wasteboard.

documentation/cnc_routers/shapeoko2.1574218860.txt.gz · Last modified: 2019/11/20 03:01 by shchang